某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
已知{an}是等差数列,{bn}是等差数列,且b2=3,b3=9,a1=b1,a14=b4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn= an+ bn,求数列{cn}的前n项和.
已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(Ⅰ)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(Ⅱ)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.
如图,在四棱锥P-ABCD中,PC⊥平面ABCD,
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ)设点E为AB的中点,在棱PB上是否存在点F,使得平面?说明理由.
已知椭圆C:过点A(2,0),B(0,1)两点.
(Ⅰ)求椭圆C的方程及离心率;
(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
设函数
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ)设,若函数有三个不同零点,求c的取值范围;
(Ⅲ)求证:是有三个不同零点的必要而不充分条件.
已知集合,,则=( )
(A) (B) (C) (D)
甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )