函数的图象大致是( )
函数有( )
A.极大值,极小值 B.极大值,极小值
C.极大值,无极小值 D.极小值,无极大值
已知,,则( )
A.a>b>c B.b>a>c C.a>c>b D.c>a>b
已知复数(i是虚数单位),则复数z在复平面内对应的点位于( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
已知集合A={y|y=lg(x-3)},B={a|a2-a+3>0},则“x>4”是“AB”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
已知命题p:∀x∈R,sin x≤1,则( ).
A.¬p:∃x0∈R,sin x0≥1
B.¬p:∀x∈R,sin x≥1
C.¬p:∃x0∈R,sin x0>1
D.¬p:∀x∈R,sin x>1
已知函数.
(1)求函数在区间上的最小值;
(2)设,其中,判断方程在区间 上的解的个数(其中为无理数,约等于且有).
已知函数
(1)求的极值
(2)若上恒成立,求的取值范围
(3)已知,求证:
已知椭圆(a>b>0)经过点M(,1),离心率为.
(1)求椭圆的标准方程;
(2)已知点P(,0),若A,B为已知椭圆上两动点,且满足,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.
已知椭圆的右焦点,长轴的左、右端点分别为,且.
(1)求椭圆的方程;
(2)过焦点斜率为()的直线交椭圆于两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.