函数的图象大致是( )
函数有( )
A.极大值,极小值 B.极大值,极小值
C.极大值,无极小值 D.极小值,无极大值
已知,,则( )
A.a>b>c B.b>a>c C.a>c>b D.c>a>b
已知复数(i是虚数单位),则复数z在复平面内对应的点位于( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
已知集合A={y|y=lg(x-3)},B={a|a2-a+3>0},则“x>4”是“AB”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
已知命题p:∀x∈R,sin x≤1,则( ).
A.¬p:∃x0∈R,sin x0≥1
B.¬p:∀x∈R,sin x≥1
C.¬p:∃x0∈R,sin x0>1
D.¬p:∀x∈R,sin x>1
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行公共自行车按每车每次的租用时间进行收费,具体收费标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,收费1元;
③租用时间为2小时以上且不超过3小时,收费2元;
④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.
(1)求甲、乙两人所付租车费相同的概率;
(2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E
已知抛物线.
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点.
已知抛物线,直线,是抛物线的焦点.
(1)在抛物线上求一点,使点到直线的距离最小;
(2)如图,过点作直线交抛物线于A、B两点.
①若直线AB的倾斜角为,求弦AB的长度;
②若直线AO、BO分别交直线于两点,求的最小值.
如图,已知长方形中,,为的中点.将沿折起,使得平面平面.
(1)求证:;
(2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为.