已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程.
已知椭圆C:+=1(a>b>0)的一个焦点是F(1,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点F的直线交椭圆C于M,N两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.
求下列各曲线的标准方程(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;(Ⅱ)抛物线的焦点是双曲线的左顶点.
(本小题满分13分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1) (Ⅰ)求椭圆的方程; (Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.(ⅰ)若为钝角,求直线在轴上的截距m的取值范围;(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1) (Ⅰ)求椭圆的方程; (Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.(ⅰ)若为钝角,求直线在轴上的截距m的取值范围;(ⅱ)求证直线MA、MB与x轴围成的三角形总是等腰三角形.
(本小题满分12分)抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 (1) 求抛物线方程;(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.
(本小题满分13分)如图,已知椭圆的焦点为、,离心率为,过点的直线交椭圆于、两点.(1)求椭圆的方程;(2)①求直线的斜率的取值范围;②在直线的斜率不断变化过程中,探究和是否总相等?若相等,请给出证明,若不相等,说明理由.
(本小题满分12分)已知,,O为坐标原点,动点E满足:(Ⅰ) 求点E的轨迹C的方程;(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.
已知椭圆方程为,左、右焦点分别是,若椭圆上的点到的距离和等于.(Ⅰ)写出椭圆的方程和焦点坐标;(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.
已知动点到的距离比它到轴的距离多一个单位.(Ⅰ)求动点的轨迹的方程; (Ⅱ)过点作曲线的切线,求切线的方程,并求出与曲线及轴所围成图形的面积.