已知椭圆:()过点(2,0),且椭圆C的离心率为.(1)求椭圆的方程;(2)若动点在直线上,过作直线交椭圆于两点,且为线段中点,再过作直线.求直线是否恒过定点,若果是则求出该定点的坐标,不是请说明理由。
已知直线的方程为,圆的方程为.(1) 把直线和圆的方程化为普通方程;(2) 求圆上的点到直线距离的最大值.
已知曲线C上的动点满足到定点的距离与到定点距离之比为.(1)求曲线的方程;(2)过点的直线与曲线交于两点,若,求直线的方程.
设直线l的方程为(a∈R).(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.
求与直线垂直,且在两坐标轴上截距之和为3的直线的方程?
设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
已知椭圆的一个顶点为B(0,4),离心率, 直线交椭圆于M,N两点.(1)若直线的方程为y=x-4,求弦MN的长:(2)如果BMN的重心恰好为椭圆的右焦点F,求直线的方程.
设分别为椭圆的左、右焦点,斜率为的直线经过右焦点,且与椭圆W相交于两点. (1)求的周长; (2)如果为直角三角形,求直线的斜率.
设是椭圆上不关于坐标轴对称的两个点,直线交轴于点(与点不重合),O为坐标原点. (1)如果点是椭圆的右焦点,线段的中点在y轴上,求直线AB的方程; (2)设为轴上一点,且,直线与椭圆的另外一个交点为C,证明:点与点关于轴对称.