数列{an}满足4a1=1,an-1=[(-1)nan-1-2]an(n≥2),(1)试判断数列{1/an+(-1)n}是否为等比数列,并证明;(2)设an2?bn=1,求数列{bn}的前n项和Sn.
(本小题满分12分)已知等差数列的前项和为,公差d0,,且成等比数列.(1)求数列的通项公式; (2)求数列的前项和公式.
(本题满分12分)已知数列是递增数列,且满足。(1)若是等差数列,求数列的通项公式;(2)对于(1)中,令,求数列的前项和。
(13分)已知数列是公差为正的等差数列,其前项和为,点在抛物线上;各项都为正数的等比数列满足.(1)求数列,的通项公式;(2)记,求数列的前n项和.
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.(理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项.(1) 若成等比数列,求之间满足的等量关系;(2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了与的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;(3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.
定义数列,(例如时,)满足,且当()时,.令.(1)写出数列的所有可能的情况;(5分)(2)设,求(用的代数式来表示);(5分)(3)求的最大值.(6分)
(本题满分16分)数列的前项和记为,且满足.(1)求数列的通项公式;(2)求和;(3)设有项的数列是连续的正整数数列,并且满足:.问数列最多有几项?并求这些项的和.
(本小题满分12分)已知数列的前n项和满足(>0,且)。数列满足(I)求数列的通项。(II)若对一切都有,求的取值范围。
(本题满分13分)设数列为单调递增的等差数列,,且依次成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和;(Ⅲ)若,求数列的前项和.
(本题满分13分)设数列为单调递增的等差数列且依次成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若求数列的前项和;(Ⅲ)若,求证: