已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<)的部分图象如图所示. (1)求函数f(x)的解析式;(2)在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)cos B=bcos C,求f的取值范围.
已知函数f(x)=sin2x+sin xcos x,x∈.(1)求f(x) 的零点;(2)求f(x)的最大值和最小值.
已知函数f(x)=sin+cosx-,g(x)=2sin2.(1)若α是第一象限角,且f(α)=.求g(α)的值;(2)求使f(x)≥g(x)成立的x的取值集合.
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象的一部分如图所示.(1)求函数f(x)的解析式;(2)当x∈时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.
如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形的PQRS面积为S2. (1)用a,θ表示S1和S2;(2)当a固定,θ变化时,求的最小值.
设向量a=(2,sin θ),b=(1,cos θ),θ为锐角.(1)若a·b=,求sin θ+cos θ的值;(2)若a∥b,求sin的值.
已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.
已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递增区间.
已知函数f(x)=(2cos2x-1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈,且f(α)=,求α的值.
设函数.(1)求函数的最小正周期和单调递增区间;(2)当时,的最大值为2,求的值,并求出的对称轴方程.