题目内容

17.解不等式组:$\left\{\begin{array}{l}{\frac{x}{2}+\frac{x+1}{3}>0}\\{x+\frac{7}{3}>\frac{4(x+1)}{3}+\frac{3}{5}}\end{array}\right.$.

分析 分别解两个一次不等式,求出它们同时成立的x的范围,写成集合(区间)的形式,可得原不等式的解集.

解答 解:不等式组:$\left\{\begin{array}{l}{\frac{x}{2}+\frac{x+1}{3}>0}\\{x+\frac{7}{3}>\frac{4(x+1)}{3}+\frac{3}{5}}\end{array}\right.$可化为:$\left\{\begin{array}{l}3x+2x+2>0\\ 15x+35>20(x+1)+9\end{array}\right.$,
解得:$\left\{\begin{array}{l}x>-\frac{2}{5}\\ x<\frac{6}{5}\end{array}\right.$,
即不等式组:$\left\{\begin{array}{l}{\frac{x}{2}+\frac{x+1}{3}>0}\\{x+\frac{7}{3}>\frac{4(x+1)}{3}+\frac{3}{5}}\end{array}\right.$的解集为:(-$\frac{2}{5}$,$\frac{6}{5}$)

点评 本题考查的知识点是一元一次不等式组的解法,难度不大,属于基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网