题目内容
△ABC中,点D在AB上,CD平分∠ACB.若
=
,
=
,|
|=1,|
|=2,则
=( )
| CB |
| a |
| CA |
| b |
| a |
| b |
| CD |
分析:由题意可得D为AB的三等分点,且
=
=
(
-
),所以
=
+
=
+
,从而得出结论.
| AD |
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| CB |
| CA |
| CD |
| CA |
| AD |
| 2 |
| 3 |
| CB |
| 1 |
| 3 |
| CA |
解答:解:因为CD平分∠ACB,由角平分线定理得
=
=2,所以D为AB的三等分点,且
=
=
(
-
),
所以
=
+
=
+
=
+
,
故选B.
| AD |
| DB |
| CA |
| CB |
| AD |
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| CB |
| CA |
所以
| CD |
| CA |
| AD |
| 2 |
| 3 |
| CB |
| 1 |
| 3 |
| CA |
| 2 |
| 3 |
| a |
| 1 |
| 3 |
| b |
故选B.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.
练习册系列答案
相关题目
△ABC中,点D在边AB上,CD平分∠ACB,若
=
,
=
,|
|=1,|
|=2,则
=( )
| CB |
| a |
| CA |
| b |
| a |
| b |
| CD |
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
D、
|
在△ABC中,点D在线段BC的延长线上,且
=3
,点O在线段CD上(与点C、D不重合),若
=x
+(1-x)
,则x的取值范围是( )
| BC |
| CD |
| AO |
| AB |
| AC |
A、(0,
| ||
B、(0,
| ||
C、(-
| ||
D、(-
|
已知△ABC中,点D在BC边上,且
=2
,
=r
+s
,则r+s的值是( )
| CD |
| DB |
| CD |
| AB |
| AC |
A、
| ||
B、
| ||
| C、-3 | ||
| D、0 |