题目内容
设函数f(x)=
cos(2x+
)+sin2x,x∈R
(1)求f(x)的最小正周期
(2)若函数g(x)对任意x∈R有g(x+
)=g(x)且x∈[0,
]时g(x)=f(x),求g(x)在区间[-
,0]上的解析式.
| ||
| 2 |
| π |
| 4 |
(1)求f(x)的最小正周期
(2)若函数g(x)对任意x∈R有g(x+
| π |
| 2 |
| π |
| 2 |
| π |
| 2 |
分析:(1)f(x)解析式第一项利用两角和与差的余弦函数公式化简,第二项利用二倍角的余弦函数公式化简,整理后再利用
解答:解:(1)f(x)=
(
cos2x-
sin2x)+
=
cos2x-
sin2x+
-
cos2x=-
sin2x+
,
∵ω=2,∴T=π;
(2)当x∈[0,
]时,g(x)=f(x)=-
sin2x+
;
当x∈[-
,0]时,得到-x∈[0,
],g(-x)=f(-x)=
sin2x+
.
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1-cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵ω=2,∴T=π;
(2)当x∈[0,
| π |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当x∈[-
| π |
| 2 |
| π |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
点评:此题考查了三角函数的周期性及其求法,以及函数解析式得求解及常用方法,熟练掌握周期公式是解本题的关键.
练习册系列答案
相关题目