题目内容
设数列{an}是等差数列,a5=6.
(1)当a3=3时,请在数列{an}中找一项am,使得a3,a5,am成等比数列;
(2)当a3=2时,若自然数n1,n2,…,nt,… (t∈N*)满足5<n1<n2<…<nt<…使得a3,a5,
,
,…,
,…是等比数列,求数列{nt}的通项公式.
(1)当a3=3时,请在数列{an}中找一项am,使得a3,a5,am成等比数列;
(2)当a3=2时,若自然数n1,n2,…,nt,… (t∈N*)满足5<n1<n2<…<nt<…使得a3,a5,
(1)a3,a5,a9成等比数列(2)n
=3t+1+2,t=1,2,3,….
(1)设{an}的公差为d,则由a5=a3+2d,
得d=
=
,由ama3=a
,即3
=62,解得m=9.即a3,a5,a9成等比数列.
(2)∵a3=2,a5=6,∴d=
=2,∴当n≥5时,an=a5+(n-5)d=2n-4,
又a3,a5,
,
,…,
,…成等比数列,
则q=
=
=3,
=a5·3t,t=1,2,3,….
又an
=2n
-4,∴2n
-4=a5·3t=6·3t,
∴2n
=2·3t+1+4.
即n
=3t+1+2,t=1,2,3,….
得d=
(2)∵a3=2,a5=6,∴d=
又a3,a5,
则q=
又an
∴2n
即n
练习册系列答案
相关题目