题目内容
2.若θ∈[${\frac{π}{4}$,$\frac{π}{2}}$],sin2θ=$\frac{{3\sqrt{7}}}{8}$,则sinθ=( )| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{\sqrt{7}}{4}$ | D. | $\frac{3}{4}$ |
分析 由θ的范围求出2θ的范围,再由平方关系求出cos2θ,根据倍角的余弦公式变形求出sinθ的值.
解答 解:由θ∈[${\frac{π}{4}$,$\frac{π}{2}}$],得2θ∈[$\frac{π}{2}$,π],又sin2θ=$\frac{{3\sqrt{7}}}{8}$,
∴cos2θ=-$\sqrt{1-si{n}^{2}2θ}$=-$\sqrt{1-(\frac{3\sqrt{7}}{8})^{2}}=-\frac{1}{8}$,
∵cos2θ=1-2sin2θ,sinθ>0,
∴sinθ=$\sqrt{\frac{1-cos2θ}{2}}$=$\sqrt{\frac{1+\frac{1}{8}}{2}}=\frac{3}{4}$,
故选:D.
点评 本题考查了平方关系和倍角的余弦公式的应用,注意角的范围确定,以及三角函数值的符号问题,是中档题.
练习册系列答案
相关题目
12.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(2,-1),若向量$\overrightarrow c$满足$(\overrightarrow c+\overrightarrow a)∥\overrightarrow b$,$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,则$\overrightarrow c$=( )
| A. | (1,3) | B. | (-1,3) | C. | (-1,-3) | D. | (-3,-1) |
11.若等比数列{an}的通项公式为an=3×2n-1,则其公比q=( )
| A. | -2 | B. | 2 | C. | 3 | D. | 6 |
12.为了得到函数y=2×2x的图象,可以把函数y=2x的图象( )
| A. | 向左平移1个单位长度 | B. | 向右平移1个单位长度 | ||
| C. | 向左平移2个单位长度 | D. | 向右平移2个单位长度 |