题目内容

已知函数f(x)=ax+x2-xlna(a>0且a≠1),若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求a的取值范围.
考点:指数函数综合题
专题:函数的性质及应用
分析:f(x)的最大值减去f(x)的最小值大于或等于e-1,由单调性知,f(x)的最大值是f(1)或f(-1),最小值f(0)=1,由f(1)-f(-1)的单调性,判断f(1)与f(-1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e-1求出a的取值范围.
解答: 解:∵存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
∴当x∈[-1,1]时,|(f(x))max-(f(x))min|=(f(x))max-(f(x))min≥e-1.
∵f(x)在[-1,0]上递减,在[0,1]上递增,
∴当x∈[-1,1]时,(f(x))min=f(0)=1,
(f(x))max=max{f(-1),f(1)},
而f(1)-f(-1)=(a+1-lna)-(
1
a
+1+lna),
记g(t)=t-
1
t
-2lnt(t>0 ),∵g′(t)=1+
1
t2
-
2
t
=(
1
t
-1)
2
≥0,(当t=1时取等号),
∴g(t)=t-
1
t
-2lnt(t>0 )在t∈(0,+∞)上单调递增,而g(1)=0,
∴当t>1时,g(t)>0;当0<t<1时,g(t)<0.
也就是当a>1时,f(1)>f(-1);当0<a<1时,f(1)<f(-1);
①当a>1时,由f(1)-f(0)≥e-1⇒a-lna≥e-1⇒a≥e,
②当0<a<1时,由f(-1)-f(0)≥e-1,可得
1
a
+lna≥e-1,
1
e
≥a>0
综上知,所求a的取值范围为 (0,
1
e
]∪[e,+∞).
点评:本题考查函数的零点,用导数判断函数单调性,利用导数研究函数极值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网