题目内容
设f(x)=
,且f(x)=x有唯一解,f(x1)=
,xn+1=f(xn)(n∈N*).
(1)求实数a;
(2)求数列{xn}的通项公式;
(3)若an=
-4009,bn=
(n∈N*),求证:b1+b2+…+bn<n+1.
| x |
| a(x+2) |
| 1 |
| 1003 |
(1)求实数a;
(2)求数列{xn}的通项公式;
(3)若an=
| 4 |
| xn |
| an+12+an2 |
| 2an+1an |
分析:(1)由
=x,得ax(x+2)=x,故ax2+(2a-1)x=0,由此能求出实数a.
(2)由(1)知,f(x)=
.由xn+1=f(xn),得
=xn+1,故
=
+
,由f(x1)=
,得
=
,由此能求出数列{xn}的通项公式.
(3)由xn=
,知an=
×4-4009=2n-1,故bn=
=1+
-
,由此能够证明b1+b2+…+bn<n+1.
| x |
| a(x+2) |
(2)由(1)知,f(x)=
| 2x |
| x+2 |
| 2xn |
| xn+2 |
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
| 1 |
| 1003 |
| 2x1 |
| x1+2 |
| 1 |
| 1003 |
(3)由xn=
| 2 |
| n+2004 |
| n+2004 |
| 2 |
| an+12+an2 |
| 2an+1an |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(1)由
=x,得ax(x+2)=x,
∴ax2+(2a-1)x=0,
当且仅当a=
时,
f(x)=x有唯一解x=0,∴a=
.
(2)由(1)知,f(x)=
.
由xn+1=f(xn),得
=xn+1,
∴
=
+
,
∴{
}是以
为首项,公差为
的等差数列,
由f(x1)=
,得
=
,
∴
=
,
∴
=
+
(n-1)=
.
∴xn=
.
(3)∵xn=
,∴an=
×4-4009=2n-1,
∴bn=
=
=
=1+
=1+
-
,
∴b1+b2+…+bn=1+1-
+1+
-
+1+
-
+…+1+
-
=1+n-
<n+1.
| x |
| a(x+2) |
∴ax2+(2a-1)x=0,
当且仅当a=
| 1 |
| 2 |
f(x)=x有唯一解x=0,∴a=
| 1 |
| 2 |
(2)由(1)知,f(x)=
| 2x |
| x+2 |
由xn+1=f(xn),得
| 2xn |
| xn+2 |
∴
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
∴{
| 1 |
| xn |
| 1 |
| x1 |
| 1 |
| 2 |
由f(x1)=
| 1 |
| 1003 |
| 2x1 |
| x1+2 |
| 1 |
| 1003 |
∴
| 1 |
| x1 |
| 2005 |
| 2 |
∴
| 1 |
| xn |
| 1 |
| x1 |
| 1 |
| 2 |
| n+2004 |
| 2 |
∴xn=
| 2 |
| n+2004 |
(3)∵xn=
| 2 |
| n+2004 |
| n+2004 |
| 2 |
∴bn=
| an+12+an2 |
| 2an+1an |
| (2n-1)2+(2n+1)2 |
| 2(2n-1)(2n+1) |
=
| 4n2+1 |
| 4n2-1 |
=1+
| 2 |
| 4n2-1 |
=1+
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴b1+b2+…+bn=1+1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=1+n-
| 1 |
| 2n-1 |
点评:本题考查实数值的求法,数列通项公式的求法,证明不等式.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目