题目内容
设f(x)=
,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,xn+1=f (xn)(n∈N*).
(1)求数列{xn}的通项公式;
(2)已知数列{an}满足a1=
,an+1=
(2+an)2-
(n∈N*),求证:对一切n≥2的正整数都满足
<
+
+…+
<2.
| x |
| a(x+2) |
(1)求数列{xn}的通项公式;
(2)已知数列{an}满足a1=
| 1 |
| 2 |
| 1 |
| 4 |
| 2an |
| an+2 |
| 3 |
| 4 |
| 1 |
| x1+a1 |
| 1 |
| 2x2+a2 |
| 1 |
| nxn+an |
分析:(1)由f(x)=x有唯一解可知对应的方程有唯一的解可求a,进而可求xn+1与xn的递推关系,构造等差数列可求
(2)由a1=
,an+1=
(2+an)2•
=
整理可得
=
-
,把已知代入即可得
=
-
,然后利用裂项即可求和,进而可证
(2)由a1=
| 1 |
| 2 |
| 1 |
| 4 |
| 2an |
| 2+an |
| (2+an)an |
| 2 |
| 1 |
| an+2 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| nxn |
| 1 |
| an |
| 1 |
| an+1 |
解答:解:(1)由f(x)=x得ax2+(2a-1)x=0(a≠0)
∴当且仅当a=
时,f(x)=x有唯一解x=0,
∴f(x)=
当f(x1)=
=1得x1=2,由xn+1=f (xn)=
可得
-
=
∴数列{
}是首项为
=
,公差为
的等差数列
∴
=
+
(n-1)=
n
∴xn=
(2)∵a1=
,an+1=
(2+an)2•
=
又a1=
∴
=
=
-
且an>0,
∴
=
-
即
=
-
当n≥2时,
+
+…+
≥
+
=
>
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
=2-
<2
∴对一切n≥2的正整数都满足
<
+
+…+
<2.
∴当且仅当a=
| 1 |
| 2 |
∴f(x)=
| 2x |
| x+2 |
当f(x1)=
| 2x1 |
| 2+x1 |
| 2xn |
| xn+2 |
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
∴数列{
| 1 |
| xn |
| 1 |
| x1 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| xn |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴xn=
| 2 |
| n |
(2)∵a1=
| 1 |
| 2 |
| 1 |
| 4 |
| 2an |
| 2+an |
| (2+an)an |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| an+1 |
| 2 |
| an(2+an) |
| 1 |
| an |
| 1 |
| an+2 |
∴
| 1 |
| an+2 |
| 1 |
| an |
| 1 |
| an+1 |
即
| 1 |
| nxn |
| 1 |
| an |
| 1 |
| an+1 |
当n≥2时,
| 1 |
| x1+a1 |
| 1 |
| 2x2+a2 |
| 1 |
| nxn+an |
| 1 | ||
2+
|
| 1 | ||
2+
|
| 82 |
| 105 |
| 3 |
| 4 |
| 1 |
| x1+a1 |
| 1 |
| 2x2+a2 |
| 1 |
| nxn+an |
=(
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| an+1 |
∴对一切n≥2的正整数都满足
| 3 |
| 4 |
| 1 |
| x1+a1 |
| 1 |
| 2x2+a2 |
| 1 |
| nxn+an |
点评:本题主要考查了利用数列的递推公式构造等差数列求解数列的通项公式及数列的裂项求和在不等式中的应用.
练习册系列答案
相关题目