题目内容
7.命题p:?α∈R,sin(π-α)=cosα;命题q:“0<a<4”是“关于x的不等式ax2+ax+1>0的解集是实数集R”的充分必要条件,则下面结论正确的是( )| A. | p是假命题 | B. | q是真命题 | C. | “p∧q”是假命题 | D. | “p∨q”是假命题 |
分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.
解答 解:sin(π-α)=sinα,当α=$\frac{π}{4}$时,sin(π-α)=sinα=cosα,
故命题p是真命题;
要使不等式ax2+ax+1>0的解集为R,
①当a=0时,1>0恒成立,满足条件;
②当a≠0时,满足$\left\{\begin{array}{l}{a>0}\\{{a}^{2}-4a<0}\end{array}\right.$,解得0<a<4,
因此要不等式ax2+ax+1>0的解集为R,必有0≤a<4,
故“0<a<4”是“ax2+ax+1>0的解集是实数集R”的充分不必要条件,
故命题q是假命题;
故p∧q”是假命题;
故选:C.
点评 本题考查了二次函数以及三角函数的性质,考查复合命题的判断,是一道基础题.
练习册系列答案
相关题目
17.如图为2015年6月份北京空气质量指数AQI-PM2.5历史数据的折线图,以下结论不正确的是( )

指数数值与等级水平表:
指数数值与等级水平表:
| 指数 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
| 等级 | 一级优 | 二级良 | 三级轻度污染 | 四级中度污染 | 五级重度污染 | 六级严重污染 |
| A. | 6月份空气质量为优的天数为8天 | |
| B. | 6月份连续2天出现中度污染的概率为$\frac{2}{29}$ | |
| C. | 6月份北京空气质量指数AQI-PM2.5历史数据的众数为160 | |
| D. | 北京6月4至7日这4天的空气质量逐渐变好 |
15.若$θ∈(\frac{π}{4},\frac{π}{2}),sin2θ=\frac{1}{16}$,则cosθ-sinθ的值是( )
| A. | $\frac{{\sqrt{15}}}{4}$ | B. | $-\frac{{\sqrt{15}}}{4}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
2.对于两个平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,定义它们的一种运算:$\overrightarrow{a}$?$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|sinθ(其中θ为向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角),则关于这种运算的以下结论中,不恒成立的是( )
| A. | $\overrightarrow{a}$?$\overrightarrow{b}$=$\overrightarrow{b}$?$\overrightarrow{a}$ | |
| B. | 若$\overrightarrow{a}$?$\overrightarrow{b}$=0,则$\overrightarrow{a}$$∥\overrightarrow{b}$ | |
| C. | ($\overrightarrow{a}$+$\overrightarrow{b}$)?$\overrightarrow{c}$=$\overrightarrow{a}$?$\overrightarrow{c}$+$\overrightarrow{b}$?$\overrightarrow{c}$ | |
| D. | 若$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),则$\overrightarrow{a}$?$\overrightarrow{b}$=|x1y2-x2y1| |
19.设集合A={x|$\frac{x-2}{x+1}$<0},B={x|y=$\sqrt{1-{x}^{2}}$},则A∩B=( )
| A. | {x|-1<x≤1} | B. | {x|-1<x<1} | C. | {x|-1≤x<1} | D. | {-1,1} |