题目内容

如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点

(1)若,求的值;

(2)若为线段的中点,求证:为此抛物线的切线;

(3)试问(2)的逆命题是否成立?说明理由.

 

【答案】

解:(1)设直线的方程为

将该方程代入

,则

因为,解得

(舍去).故

   (2)由题意知,直线的斜率为

的导数为,所以点处切线的斜率为

因此,为该抛物线的切线.

(3)(2)的逆命题成立,证明如下:

为该抛物线的切线,则

又直线的斜率为,所以

,因,有

故点的横坐标为,即点是线段的中点. 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网