题目内容
若函数f(x)=log2(x+
)-a在区间(
,2)内有零点,则实数a的取值范围是( )
| 1 |
| x |
| 1 |
| 2 |
A.(-log2
| B.(1,log2
| C.(0,log2
| D.[1,log2
|
若f(x)存在零点,
则方程log2(x+
)=a在(
,2)内有交点
令x+
=t(
<x<2)
则由函数令x+
=t在(
,1]上单调递减,在(1,2)上单调递增可知,2≤x+
<
∴1≤log2(x+
)<log2
∴1≤a<log2
故选B
则方程log2(x+
| 1 |
| x |
| 1 |
| 2 |
令x+
| 1 |
| x |
| 1 |
| 2 |
则由函数令x+
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| x |
| 5 |
| 2 |
∴1≤log2(x+
| 1 |
| x |
| 5 |
| 2 |
∴1≤a<log2
| 5 |
| 2 |
故选B
练习册系列答案
相关题目