题目内容

3.函数f(x)=$\frac{x}{2}$-sinx,$x∈(0,\frac{π}{2})$的单调递减区间是(  )
A.$(0,\frac{π}{6})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{2})$D.$(\frac{π}{3},\frac{π}{2})$

分析 先求出函数的导数,令导函数小于0,解出即可.

解答 解:∵f′(x)=$\frac{1}{2}$-cosx,
令f′(x)<0,即cosx>$\frac{1}{2}$,
解得:-$\frac{π}{3}$+2kπ<x<$\frac{π}{3}$+2kπ,k∈Z,
∵x∈(0,$\frac{π}{2}$),
∴f(x)的单调减区间为(0,$\frac{π}{3}$),
故选:B

点评 本题考察了函数的单调性,导数的应用,是一道基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网