题目内容
若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.
(Ⅰ)判断数列an=(
)n(n∈N+)是否是凸数列?
(Ⅱ)若数列{an}为凸数列,k、n、m∈N+,且k<n<m,
(i)求证:
≥
;
(ii)设Sn是数列{an}的前n项和,求证:
Sk+
Sm≥
Sn.
(Ⅰ)判断数列an=(
| 3 |
| 2 |
(Ⅱ)若数列{an}为凸数列,k、n、m∈N+,且k<n<m,
(i)求证:
| am-an |
| m-n |
| an-ak |
| n-k |
(ii)设Sn是数列{an}的前n项和,求证:
| m-n |
| k |
| n-k |
| m |
| m-k |
| n |
分析:(Ⅰ)将an=(
)n(n∈N+)代入ak+1+ak-1-2ak判定符号,从而确定数列{an}是否是凸数列;
(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得ak+1-ak≥ak-ak-1,从而am-an≥(m-n)(an+1-an)则
≥an+1-an,同理可得an-ak≤(n-k)(an+1-an)即
≤an+1-an,从而证得结论;
(ii)由
≥
得(m-n)ak+(n-k)am≥(m-k)an①,先证{
}是凸数列,由①得可得结论.
| 3 |
| 2 |
(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得ak+1-ak≥ak-ak-1,从而am-an≥(m-n)(an+1-an)则
| am-an |
| m-n |
| an-ak |
| n-k |
(ii)由
| am-an |
| m-n |
| an-ak |
| n-k |
| Sn |
| n |
解答:解:(Ⅰ)∵ak+1+ak-1-2ak=(
)k+1+(
)k-1-2(
)k=
(
)k-1>0,
∴数列an=(
)n(n∈N+)是凸数列.
证明(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得
ak+1-ak≥ak-ak-1am-an=(am-am-1)+(am-1-am-2)+…+(an+1-an)≥(m-n)(an+1-an)
⇒
≥an+1-an,an-ak=(an-an-1)+(an-1-an-2)+…+(ak+1-ak)≤(n-k)(an-an-1)≤(n-k)(an+1-an)
⇒
≤an+1-an,故
≥
.
(ii)由
≥
得(m-n)ak+(n-k)am≥(m-k)an.①
故先证{
}是凸数列.
在(m-n)ak+(n-k)am≥(m-k)an中令m=n+1得ak+(n-k)an+1≥(n+1-k)an,令k=1,2,…,n-1,(n≥2)叠加得Sn-1+
n(n-1)an+1≥
(n+2)(n-1)an,⇒2Sn-1+n(n-1)(Sn+1-Sn)≥(n+2)(n-1)(Sn-Sn-1)
故{
}是凸数列,由①得
Sk+
Sm≥
Sn.
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 4 |
| 3 |
| 2 |
∴数列an=(
| 3 |
| 2 |
证明(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得
ak+1-ak≥ak-ak-1am-an=(am-am-1)+(am-1-am-2)+…+(an+1-an)≥(m-n)(an+1-an)
⇒
| am-an |
| m-n |
⇒
| an-ak |
| n-k |
| am-an |
| m-n |
| an-ak |
| n-k |
(ii)由
| am-an |
| m-n |
| an-ak |
| n-k |
故先证{
| Sn |
| n |
在(m-n)ak+(n-k)am≥(m-k)an中令m=n+1得ak+(n-k)an+1≥(n+1-k)an,令k=1,2,…,n-1,(n≥2)叠加得Sn-1+
| 1 |
| 2 |
| 1 |
| 2 |
|
故{
| Sn |
| n |
| m-n |
| k |
| n-k |
| m |
| m-k |
| n |
点评:本题主要考查了数列与不等式的综合,以及新定义和数列的函数特性,同时考查了计算能力,属于难题.
练习册系列答案
相关题目