题目内容

1.已知函数f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$.
(1)求函数f(x)的单调减区间;
(2)已知△ABC中角A,B,C所对的边分别是a,b,c,其中b=2,若锐角A满足f($\frac{A}{2}$-$\frac{π}{6}$)=3,且$\frac{π}{4}$≤B≤$\frac{π}{3}$,求边c的取值范围.

分析 (1)利用倍角公式、和差公式可化简f(x),再利用正弦函数的单调性即可得出.
(2)由$f(\frac{A}{2}-\frac{π}{6})=\sqrt{3}$且角A为锐角得:$A=\frac{π}{3}$.又由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$及b=2,可得c.

解答 解:(1)∵$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x-\sqrt{3}$,∴$f(x)=sin2x+\sqrt{3}cos2x=2sin(2x+\frac{π}{3})$(3分)∴$当2kπ+\frac{π}{2}≤2x+\frac{π}{3}≤\frac{3π}{2}+2kπ,k∈Z时,解得$$kπ+\frac{π}{12}≤x≤\frac{7π}{12}+kπ,k∈Z$(6分)
因此,函数f(x)的单调减区间为$[kπ+\frac{π}{12},\frac{7π}{12}+kπ](k∈Z)$(7分)
(2)由$f(\frac{A}{2}-\frac{π}{6})=\sqrt{3}$且角A为锐角得:$A=\frac{π}{3}$    (9分)
又由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}$及b=2,
∴$c=\frac{2sinC}{sinB}=\frac{2sin(A+B)}{sinB}=\frac{{sinB+\sqrt{3}cosB}}{sinB}=1+\frac{{\sqrt{3}}}{tanB}$(2分)
∵$\frac{π}{4}≤B≤\frac{π}{3}$,∴$2≤c≤1+\sqrt{3}$(14分)

点评 本题考查了倍角公式、和差公式、正弦函数的单调性、正弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网