题目内容
α是第二象限的角,且sinα=
,求
的值.
| 3 |
| 5 |
sin(π+α)•cos(π-α)•tan(-
| ||||
tan(
|
分析:利用诱导公式将
化简为:
=-cosα,而α是第二象限的角,且sinα=
,从而可得答案.
sin(π+α)•cos(π-α)•tan(-
| ||||
tan(
|
| -sinα•(-cosα)•cotα |
| -cotα•sinα |
| 3 |
| 5 |
解答:解:∵
=
=-cosα,
又α是第二象限的角,且sinα=
,
∴cosα=-
=-
=-
,
∴原式=
.
sin(π+α)•cos(π-α)•tan(-
| ||||
tan(
|
| -sinα•(-cosα)•cotα |
| -cotα•sinα |
又α是第二象限的角,且sinα=
| 3 |
| 5 |
∴cosα=-
| 1-sin2α |
1-
|
| 4 |
| 5 |
∴原式=
| 4 |
| 5 |
点评:本题考查诱导公式的作用,着重考查同角三角函数间的基本关系,熟练掌握公式是解题之关键,属于基础题.
练习册系列答案
相关题目