题目内容

6.已知m=$\frac{b}{a}$,n=$\frac{b+p}{a+p}$(a>b>0,p>0),函数f(x)=$\left\{\begin{array}{l}{-1,x<0}\\{1,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{x,x<0}\\{-x,x≥0}\end{array}\right.$,则$\frac{(m+n)f(m-n)+g(m-n)}{2}$等于(  )
A.-mB.-nC.mD.n

分析 作差法比较m-n<0,从而化简即可.

解答 解:m-n=$\frac{b}{a}$-$\frac{b+p}{a+p}$=$\frac{(b-a)p}{a(a+p)}$<0,
故f(m-n)=-1,g(m-n)=m-n,
故$\frac{(m+n)f(m-n)+g(m-n)}{2}$
=$\frac{-(m+n)+m-n}{2}$=-n,
故选:B.

点评 本题考查了作差法的应用及函数的性质的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网