题目内容
6.已知m=$\frac{b}{a}$,n=$\frac{b+p}{a+p}$(a>b>0,p>0),函数f(x)=$\left\{\begin{array}{l}{-1,x<0}\\{1,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{x,x<0}\\{-x,x≥0}\end{array}\right.$,则$\frac{(m+n)f(m-n)+g(m-n)}{2}$等于( )| A. | -m | B. | -n | C. | m | D. | n |
分析 作差法比较m-n<0,从而化简即可.
解答 解:m-n=$\frac{b}{a}$-$\frac{b+p}{a+p}$=$\frac{(b-a)p}{a(a+p)}$<0,
故f(m-n)=-1,g(m-n)=m-n,
故$\frac{(m+n)f(m-n)+g(m-n)}{2}$
=$\frac{-(m+n)+m-n}{2}$=-n,
故选:B.
点评 本题考查了作差法的应用及函数的性质的应用,属于基础题.
练习册系列答案
相关题目
11.已知$\frac{3π}{4}$<α<π,$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=-$\frac{10}{3}$,则$\frac{5si{n}^{2}\frac{α}{2}+8sin\frac{α}{2}cos\frac{α}{2}+11co{s}^{2}\frac{α}{2}-8}{\sqrt{2}sin(α-\frac{π}{2})}$的值为( )
| A. | $\frac{\sqrt{2}}{6}$ | B. | -$\frac{\sqrt{2}}{6}$ | C. | -$\frac{5\sqrt{2}}{6}$ | D. | $\frac{5\sqrt{2}}{6}$ |
15.在等差数列{an}中,a1=81,公差d=-7,则前( )项和最大.
| A. | 13 | B. | 12 | C. | 11 | D. | 10 |