题目内容

关于x的方程log
1
2
(x-a)-x+2=0
的根在(1,2)内,则实数a的取值范围是(  )
分析:先设函数f(x)=log 
1
2
(x-a)-x+2.结合根的分布得:f(1),f(2)函数值异号代入解不等式即可求出实数a的取值范围
解答:解:设:f(x)=log 
1
2
(x-a)-x+2
根据函数的单调性得在区间(1,2)内只有一个
根据零点存在性定理得:f(1),f(2)函数值异号
所以有:f(1)•f(2)=[log 
1
2
(1-a)-1+2]•[log 
1
2
(2-a)-2+2]<0⇒log 
1
2
 
1
2
(1-a)
•log 
1
2
(2-a)<0
解得:
0<
1
2
(1-a)<1
2-a>1
1
2
(1-a)>1
0<2-a<1
⇒-1<a<1或a不存在.
故:-1<a<1
故选:B.
点评:本题主要考查函数的零点与方程根的关系.解决这种问题的方法是用零点存在性定理:即函数两端点值异号.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网