题目内容

4.在△ABC中,角A,B,C的对边边长分别为a,b,c且满足csinA=acosC,则$\sqrt{3}$sinA-cos(${B+\frac{π}{4}}$)的取值范围为(1,2].

分析 由题意和正弦定理可得B=$\frac{3π}{4}$-A,0<A<$\frac{3π}{4}$,进而由三角函数公式可得$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)=2sin(A+$\frac{π}{6}$),利用正弦函数的性质即可得解.

解答 解:∵在△ABC中,角A,B,C的对边边长分别为a,b,c且满足csinA=acosC,
∴由正弦定理可得sinCsinA=sinAcosC,
∵sinA≠0,
∴sinC=cosC,
∴C=$\frac{π}{4}$,
∴B=$\frac{3π}{4}$-A,0<A<$\frac{3π}{4}$,
∴$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)=$\sqrt{3}$sinA-cos($\frac{3π}{4}$-A+$\frac{π}{4}$)
=$\sqrt{3}$sinA+cosA=2sin(A+$\frac{π}{6}$),
∵$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{11π}{12}$,可得:$\frac{1}{2}$<sin(A+$\frac{π}{6}$)≤1,
∴$\sqrt{3}$sinA-cos(${B+\frac{π}{4}}$)=2sin(A+$\frac{π}{6}$)∈(1,2].
故答案为:(1,2].

点评 本题考查三角函数的最值,涉及正弦定理和三角函数公式的应用,考查了转化思想和数形结合思想,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网