题目内容
【题目】某球员是当今
国内最好的球员之一,在
赛季常规赛中,场均得分达
分。
分球和
分球命中率分别为
和
,罚球命中率为
.一场
比赛分为一、二、三、四节,在某场比赛中该球员每节出手投
分的次数分别是
,
,
,
,每节出手投三分的次数分别是
,
,
,
,罚球次数分别是
,
,
,
(罚球一次命中记
分)。
(1)估计该球员在这场比赛中的得分(精确到整数);
(2)求该球员这场比赛四节都能投中三分球的概率;
(3)设该球员这场比赛中最后一节的得分为
,求
的分布列和数学期望。
【答案】(1)
分;(2)
;(3)见解析.
【解析】
(1)分别估算
分得分、
分得分和罚球得分,加和得到结果;(2)分别计算各节能投中
分球的概率,相乘得到所求概率;(3)确定
所有可能取值为
,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求得期望.
(1)估计该球员
分得分为:
分;
分得分为:
分;
罚球得分为:
分
估计该球员在这场比赛中的得分为:
分
(2)第一节和第三节能投中
分球的概率为:![]()
第二节和第四节能投中
分球的概率为:![]()
四节都能投中
分球的概率为:![]()
(3)由题意可知,
所有可能的取值为:![]()
则
;![]()
;
;
;![]()
的分布列为:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
数学期望![]()
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,
得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程
,其中
)
【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
温差 | 9 | 10 | 11 | 8 | 12 |
发芽数 | 38 | 30 | 24 | 41 | 17 |
利用散点图,可知
线性相关。
(1)求出
关于
的线性回归方程,若4月6日星夜温差
,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;
(2)若从4月1日
4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.
(公式:
)