题目内容
等比数列{an}的首项为a1=a,公比q≠1,则
+
+…+
=
.
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| q2n-1 |
| a2q(q2n-q2n-2) |
| q2n-1 |
| a2q(q2n-q2n-2) |
分析:先求出数列的首项和公式,然后根据等比数列的前n项和进行求解,化简即可得到结论.
解答:解:
,
,…,
是首项为
=
,公比为
∴
+
+…+
=
=
故答案为:
.
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| a1a2 |
| 1 |
| a2q |
| 1 |
| q2 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| ||||
1-
|
| q2n-1 |
| a2q(q2n-q2n-2) |
故答案为:
| q2n-1 |
| a2q(q2n-q2n-2) |
点评:本题主要考查了等比数列的求和,解题的关键是弄清数列的首项和公比,属于中档题.
练习册系列答案
相关题目