题目内容

已知实数m为非零常数,且f(x)=loga(1+
m
x-1
)
(a>0且a≠1)为奇函数.
(1)求m的值;
(2)判断f(x)在区间(1,+∞)上的单调性,并用单调性定义加以证明;
(3)当x∈(b,a)时,函数f(x)的值域为(1,+∞),请确定实数a与b的取值.
(1)若函数f(x)=loga(1+
m
x-1
)
(a>0且a≠1)为奇函数
故f(-x)+f(x)=loga(1+
m
-x-1
)
+loga(1+
m
x-1
)
=loga[(1+
m
x-1
)(1+
m
-x-1
)]
=loga[
-x2+(m-1)2
1-x2
]
=0
-x2+(m-1)2
1-x2
=1
,即(m-1)2=1
∵m≠0,
∴m=2
(2)由(1)得f(x)=loga(1+
2
x-1
)
=loga(
x+1
x-1
)

当0<a<1时,函数在区间(1,+∞)上为增函数
当a>1时,函数在区间(1,+∞)上为减函数,理由如下:
令x1,x2是区间(1,+∞)上的任意两个值,且x1<x2
则x2-x1>0,x1-1>0,x2+1>0,1+
2(x2-x1)
(x1-1)•(x2+1)
>1
则f(x1)-f(x2)=loga(
x1+1
x1-1
)
-loga(
x2+1
x2-1
)
=loga(
x1+1
x1-1
x2-1
x2+1
)
=loga[1+
2(x2-x1)
(x1-1)•(x2+1)
]

当0<a<1时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数在区间(1,+∞)上为增函数
当a>1时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数在区间(1,+∞)上为减函数
(3)由(1)得f(x)=loga(
x+1
x-1
)
的定义域为(-∞,-1)∪(1,+∞),
当0<a<1时,(b,a)?(-∞,-1)∪(1,+∞),此时函数的解析式无意义;
当a>1,若函数的解析式有意义,则1≤b<a,
由(2)可得,此时函数在(b,a)上为减函数
若函数f(x)的值域为(1,+∞)
则f(a)=1,
loga(
a+1
a-1
)
=1
a+1
a-1
=a

解得a=1+
2

lim
x→b
(1+
2
x-1
)=+∞

解得b=1
综上,a=1+
2
,b=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网