题目内容
如图,点的坐标为,点 的坐标为,函数,若在矩形 内随机取一点,则此点取自阴影部分的概率等于 .
某班一共准备了6个节目将参加厦门一中音乐广场活动,节目顺序有如下要求:甲、乙两个节目必须相邻,丙、丁两个节目不能相邻,则在这次活动中节目顺序的编排方案共有 种.
已知函数()
(1)求的最小值;
(2)若,判断方程在区间内实数解的个数;
(3)证明:对任意给定的,总存在正数,使得当时,恒有.
设 ,则“ ”是“ ”的
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
已知抛物线:的焦点在双曲线:的右准线上,抛物线与直线交于两点,的延长线与抛物线交于两点.
(1)求抛物线的方程;
(2)若的面积等于,求的值;
(3)记直线的斜率为,证明:为定值,并求出该定值.
在一块并排10垄的田地中,选择3垄分别种植A,B,C三种作物,每种作物种植一垄.为有利于作物生长,要求任意两种作物的间隔不小于2垄,则不同的种植方法共有( )
A.180种 B.120种 C.108种 D.90种
设 ,则“ ”是“ ”的( )
把函数的图象向右平移(其中)个单位,所得图象关于y轴对称,则的最小值是( )
A. B. C. D.
若点O和点F分别为双曲线的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为__________.