题目内容
已知椭圆C:![]()
(1)求
的取值范围;
(2)若AP∩l=M,AQ∩l=N,求证:M、N两点的纵坐标之积为定值.
答案:(理21文22)解:(1)①当直线PQ的斜率不存在时,点P(1,
),Q(1,-
),A(-2,0),
=(3,
),
=(3,-
),
=3×3-
=
.
②设直线PQ的斜率为k,P(x1,y1),Q(x2,y2),方程为y=k(x-1)(k≠0),
![]()
代入椭圆方程得(4k2+3)x2-8k2x+4k2-12=0.∴![]()
=(x1+2,y1),
=(x2+2,y2).
=x1x2+2(x1+x2)+4+y1y2
=(k2+1)x1x2+(2-k2)(x1+x2)+4+k2=
.
∵
,∴0<
<
.综上所述,∴0<
≤
.
(2)设M(4,y3),N(4,y4),∴y3=
.∴y4=
,
y3·y4=
=
=-9.
练习册系列答案
相关题目