ÌâÄ¿ÄÚÈÝ
12£®ÒÑÖª|$\overrightarrow{a}$|=3£¬|$\overrightarrow{b}$|=5£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬ÈôÏòÁ¿k$\overrightarrow{a}$+$\overrightarrow{b}$Óëk$\overrightarrow{a}$-$\overrightarrow{b}$»¥Ïà´¹Ö±£¬ÔòʵÊýkµÄֵΪ£¨¡¡¡¡£©| A£® | $\frac{5}{3}$ | B£® | $\frac{3}{5}$ | C£® | ¡À$\frac{3}{5}$ | D£® | ¡À$\frac{5}{3}$ |
·ÖÎö ÀûÓÃÏòÁ¿µÄÊýÁ¿»ýΪ0£¬Áгö·½³Ì¼´¿ÉÍÆ³ö½á¹û£®
½â´ð ½â£º|$\overrightarrow{a}$|=3£¬|$\overrightarrow{b}$|=5£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$²»¹²Ïߣ¬ÏòÁ¿k$\overrightarrow{a}$+$\overrightarrow{b}$Óëk$\overrightarrow{a}$-$\overrightarrow{b}$»¥Ïà´¹Ö±£¬
¿ÉµÃ£¨k$\overrightarrow{a}$+$\overrightarrow{b}$£©£¨k$\overrightarrow{a}$-$\overrightarrow{b}$£©=0£¬
µÃk2|$\overrightarrow{a}$|2-|$\overrightarrow{b}$|2=0£¬
k2=$\frac{25}{9}$£¬
½âµÃk=$¡À\frac{5}{3}$£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®¶ÔÓÚº¯Êýf£¨x£©=$\frac{x-1}{x+1}$£¬Éèf2£¨x£©=f[f£¨x£©]£¬f3£¨x£©=f[f2£¨x£©]£¬¡£¬fn+1£¨x£©=f[fn£¨x£©]£¨n¡ÊN*£¬ÇÒn¡Ý2£©£¬ÁºÏM={x|f2015£¨x£©=-x£¬x¡ÊR}£¬Ôò¼¯ºÏMΪ£¨¡¡¡¡£©
| A£® | ¿Õ¼¯ | B£® | ʵÊý¼¯ | C£® | µ¥ÔªËؼ¯ | D£® | ¶þÔªËØ¼¯ |
17£®Èôf£¨x£©=-x2+ax+2+lg£¨2-|x|£©£¨a¡ÊR£©ÊÇżº¯Êý£¬ÇÒf£¨1-m£©£¼f£¨m£©£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨$\frac{1}{2}$£¬+¡Þ£© | B£® | £¨-¡Þ£¬$\frac{1}{2}$£© | C£® | £¨$\frac{1}{2}$£¬2£© | D£® | £¨-1£¬$\frac{1}{2}$£© |