题目内容
已知△ABC中,O为外心,H为垂心,AH=1,BH=
,BC=
,
=
+
+
,则S△AOB:S△BOC:S△AOC=( )
| 2 |
| 3 |
| OH |
| OA |
| OB |
| OC |
分析:过点O作垂线OD交BC与点D,并延长使得OE=2OD,根据
=
+
+
可得
=
+
则四边形OAHE为平行四边形,从而可求出OB的长和S△BOC,然后根据
-
=
=
+
,两边平方可求出∠AOC,从而可求出S△AOC,根据∠AOB=360°-∠BOC-∠AOC,可求出S△AOB,即可求出所求.
| OH |
| OA |
| OB |
| OC |
| OH |
| OA |
| OE |
| OH |
| OB |
| BH |
| OA |
| OC |
解答:解:
过点O作垂线OD交BC与点D,并延长使得OE=2OD
∵
=
+
+
,
∴
=
+
则四边形OAHE为平行四边形
则AH=OE=1即OD=
OE=
∵BC=
∴S△BOC=
×
×
=
∵OD=
,BD=
∴OA=OB=OC=1
∵
=
+
+
,
∴
-
=
=
+
则|
|2=|
+
|2即2=1+1+2cos∠AOC
∴∠AOC=90°
而S△BOC=
=
sin∠BOC
则∠BOC=120°,∠AOB=360°-90°-120°=150°
∴S△AOB=
sin∠AOB=
×
=
S△AOC=
sin∠AOC=
×1=
∴S△AOB:S△BOC:S△AOC=
:
:
=1:
:2
故选B.
∵
| OH |
| OA |
| OB |
| OC |
∴
| OH |
| OA |
| OE |
则AH=OE=1即OD=
| 1 |
| 2 |
| 1 |
| 2 |
∵BC=
| 3 |
∴S△BOC=
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 4 |
∵OD=
| 1 |
| 2 |
| ||
| 2 |
∴OA=OB=OC=1
∵
| OH |
| OA |
| OB |
| OC |
∴
| OH |
| OB |
| BH |
| OA |
| OC |
则|
| BH |
| OA |
| OC |
∴∠AOC=90°
而S△BOC=
| ||
| 4 |
| 1 |
| 2 |
则∠BOC=120°,∠AOB=360°-90°-120°=150°
∴S△AOB=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
S△AOC=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴S△AOB:S△BOC:S△AOC=
| 1 |
| 4 |
| ||
| 4 |
| 1 |
| 2 |
| 3 |
故选B.
点评:本题主要考查了平面向量及应用,以及三角形的垂心和外心,同时考查了运算求解的能力,属于难题.
练习册系列答案
相关题目