题目内容

已知△ABC中,O为外心,H为垂心,AH=1,BH=
2
,BC=
3
OH
=
OA
+
OB
+
OC
,则S△AOB:S△BOC:S△AOC=(  )
分析:过点O作垂线OD交BC与点D,并延长使得OE=2OD,根据
OH
=
OA
+
OB
+
OC
可得
OH
=
OA
+
OE
则四边形OAHE为平行四边形,从而可求出OB的长和S△BOC,然后根据
OH
-
OB
=
BH
=
OA
+
OC
,两边平方可求出∠AOC,从而可求出S△AOC,根据∠AOB=360°-∠BOC-∠AOC,可求出S△AOB,即可求出所求.
解答:解:过点O作垂线OD交BC与点D,并延长使得OE=2OD
OH
=
OA
+
OB
+
OC

OH
=
OA
+
OE
则四边形OAHE为平行四边形
则AH=OE=1即OD=
1
2
OE=
1
2

∵BC=
3

∴S△BOC=
1
2
×
3
×
1
2
=
3
4

∵OD=
1
2
,BD=
3
2

∴OA=OB=OC=1
OH
=
OA
+
OB
+
OC

OH
-
OB
=
BH
=
OA
+
OC

|
BH
|2=|
OA
+
OC
|2
即2=1+1+2cos∠AOC
∴∠AOC=90°
而S△BOC=
3
4
=
1
2
sin∠BOC
则∠BOC=120°,∠AOB=360°-90°-120°=150°
∴S△AOB=
1
2
sin∠AOB=
1
2
×
1
2
=
1
4

S△AOC=
1
2
sin∠AOC=
1
2
×1=
1
2

∴S△AOB:S△BOC:S△AOC=
1
4
3
4
1
2
=1:
3
:2
故选B.
点评:本题主要考查了平面向量及应用,以及三角形的垂心和外心,同时考查了运算求解的能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网