题目内容

在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(1)证明数列{an-n}是等比数列;
(2)设数列{an}的前n项和Sn,求Sn+1-4Sn的最大值.
(1)由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*
又a1-1=1,
所以数列{an-n}是首项为1,且公比为4的等比数列.
(2)由(Ⅰ)可知an-n=4n-1
于是数列{an}的通项公式为an=4n-1+n.
所以数列{an}的前n项和Sn=
4n-1
3
+
n(n+1)
2
,Sn+1=
4n+1-1
3
+
(n+2)(n+1)
2

所以Sn+1-4Sn=-
1
2
(3n2+n-4),
故n=1,最大值为:0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网