题目内容
7.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$内的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是( )| A. | [-1,0] | B. | [-1,2] | C. | [0,1] | D. | [0,2] |
分析 由约束条件作出可行域,由数量积的坐标表示可得目标函数z=-x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$作出可行域如图,![]()
A′(0,2),
联立$\left\{\begin{array}{l}{x=1}\\{x+y=2}\end{array}\right.$,解得B(1,1),
由z=$\overrightarrow{OA}$•$\overrightarrow{OM}$=-x+y,得y=x+z,
由图可知,当直线y=x+z分别过A′和B时,z有最大值和最小值,分别为2,0,
∴$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是[0,2].
故选:D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
18.已知直线l⊥平面α,直线m?平面β,下列命题正确的是( )
| A. | 若α⊥β,则l∥m | B. | 若l⊥m,则α∥β | C. | 若l∥β,则m⊥α | D. | 若α∥β,则l⊥m |
15.已知表面积为24π的球外接于三棱锥S-ABC,且∠BAC=$\frac{π}{3}$,BC=4,则三棱锥S-ABC的体积最大值为( )
| A. | $\frac{8\sqrt{2}}{3}$ | B. | $\frac{16\sqrt{2}}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{32}{3}$ |
2.已知集合A={(x,y)|y=x2+1},B={y|y=x2+1},则下列关系正确的是( )
| A. | A=B | B. | A⊆B | C. | B⊆A | D. | A∩B=∅ |
12.圆Г的圆周上六个点将圆周等分,经过这6个点中任意两点做圆的弦,在所做的这些弦中任意取出两条,则这两条弦有公共点的概率为( )
| A. | $\frac{5}{7}$ | B. | $\frac{4}{7}$ | C. | $\frac{1}{3}$ | D. | $\frac{4}{15}$ |