题目内容

17.已知各项均为正数的数列{an}满足:Sn为数列{an}的前n项和,且2,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若cn=n•an,求数列{cn}的前n项和Tn

分析 (1)由2,an,Sn成等差数列.可得2an=Sn+2,再利用递推关系、等比数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)∵2,an,Sn成等差数列.
∴2an=Sn+2,
∴n=1,2a1=a1+2,解得a1=2;
当n≥2时,2an-1=Sn-1+2,∴2an-2an-1=an,化为an=2an-1
∴数列{an}成等比数列,首项为2,公比为2,
∴an=2n
(2)cn=n•an=n•2n
∴数列{cn}的前n项和Tn=2+2×22+3×22+…+n•2n
2Tn=22+2×23+…+(n-1)•2n+n•2n+1
∴-Tn=2+22+23+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-2,
∴Tn=(n-1)•2n+1+2.

点评 本题考查了递推关系、“错位相减法”、等差数列与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网