题目内容

11.已知函数f(x)=log2$\frac{x}{1-x}$.
(1)求函数的定义域;
(2)若函数f(x)在其定义域内是增函数,解不等式f(t)-f(2t-$\frac{1}{2}$)≤0.

分析 (1)解不等式$\frac{x}{1-x}>0$即可.
(2)利用函数单调性将不等式转化为不等式t≤2t-$\frac{1}{2}$,同时注意定义域即可.

解答 解:(1)由f(x)=log2$\frac{x}{1-x}$得:$\frac{x}{1-x}>0$,解得:0<x<1.
∴函数的定义域是(0,1).
(2)∵f(t)-f(2t-$\frac{1}{2}$)≤0,
∴f(t)≤f(2t-$\frac{1}{2}$).
∵函数f(x)在(0,1)内是增函数,
∴$\left\{\begin{array}{l}{t≤2t-\frac{1}{2}}\\{0<t<1}\\{0<2t-\frac{1}{2}<1}\end{array}\right.$.解得$\frac{1}{2}≤t<\frac{3}{4}$.
∴不等式f(t)-f(2t-$\frac{1}{2}$)≤0的解为$\frac{1}{2}≤t<\frac{3}{4}$.

点评 本题考查了对数函数的定义域、函数单调性的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网