题目内容
已知是数列的前项和,则 .
利用
已知是数列的前项和,且对任意,有,
求的通项公式;
求数列的前项和.
已知是数列的前项和,向量,,且满足,则
已知 是数列的前项和,且
(1)求数列的通项公式;
(2)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列 的变号数,令(n为正整数),求数列的变号数;
(3)记数列的前的和为,若对恒成立,求正整数的最小值。
12分)已知是数列的前项和,且对任意,有.记.其中为实数,且.
(1)当时,求数列的通项;
(2)当时,若对任意恒成立,求的取值范围.
(15分)已知是数列的前项和,(,),且.
(1)求的值,并写出和的关系式;
(2)求数列的通项公式及的表达式;
(3)我们可以证明:若数列有上界(即存在常数,使得对一切 恒成立)且单调递增;或数列有下界(即存在常数,使得对一切恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.