题目内容
已知实系数一元二次方程ax2+bx+3=0的一个根为2-
解:设方程的两个根为x1,x2,其中x1=2-
i,
则根据韦达定理得x1+x2=-
,x1·x2=
.
又因为方程的虚根共轭知 x2=2+
i.
于是有
解得![]()
练习册系列答案
相关题目
已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个实根为x1,x2,且 0<x1<1,x2>1,则
的取值范围是( )
| b |
| a |
A、(-1,-
| ||
B、(-1,-
| ||
C、(-2,-
| ||
D、(-2,-
|