题目内容

18.如图,在四棱柱ABCD-A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E为线段AD上的任意一点(不包括A、D两点),平面CEC1与平面BB1D交于FG.
(1)证明:AC⊥BD;
(2)证明:FG∥平面AA1B1B.

分析 (1)先证出BB1⊥AC,AC⊥B1D,即可证明AC⊥平面BB1D,从而证出AC⊥BD;
(2)先证明CC1∥平面BB1D,得出CC1∥FG,从而得出FG∥BB1,再证出FG∥平面AA1B1B.

解答 解:(1)证明:四棱柱ABCD-A1B1C1D1中,
∵BB1⊥底面ABCD,AC?平面ABCD,
∴BB1⊥AC;
又AC⊥B1D,
BB1∩B1D=B1
∴BB1?平面BB1D,B1D?平面BB1D,
∴AC⊥平面BB1D;
又BD?平面BB1D,
∴AC⊥BD;
(2)四棱柱ABCD-A1B1C1D1中,CC1∥BB1
CC1?平面BB1D,BB1?平面BB1D,
∴CC1∥平面BB1D;
又平面CEC1∩平面BB1D=FG,
∴CC1∥FG,
∴FG∥BB1
又FG?平面ABB1A1,BB1?平面ABB1A1
∴FG∥平面AA1B1B.

点评 本题主要考查了空间中的直线与平面垂直、直线与平面平行的判定和性质的应用问题,也考查了空间想象能力和推理论证能力,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网