题目内容
用五点法作函数y=3sin(2x+| π | 3 |
分析:根据“五点法”作图的步骤,我们令相位角2x+
分别等0,
,π,
,2π,并求出对应的x,y值,描出五点后,用平滑曲线连接后,即可得到函数y=3sin(2x+
)的一个周期简图,根据图象分析出函数取最大值时自变量x的值,及函数的周期,即可得到使函数取得最大值的自变量x的集合.
| π |
| 3 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 3 |
解答:解:列表:
函数函数y=3sin(2x+
)的在区间[-
,
]上的图象如下图所示:

由图可得:当x∈{x|x=
+kπ,k∈Z}时,函数取最大值.
2x+
|
0 |
|
π |
|
2π | ||||||||||
| x | -
|
|
|
|
| ||||||||||
y=3sin(2x+
|
0 | 3 | 0 | -3 | 0 |
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
由图可得:当x∈{x|x=
| π |
| 12 |
点评:本题考查的知识点是五点法作函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的值域,其中利用“五点法”画出函数的简图,并根据函数的直观性分析函数的值域是解答本题的关键.
练习册系列答案
相关题目
用五点法作函数y=sinx的图象时,应描出的五个点的横坐标分别是( )
A、0,
| ||||||||
B、0,
| ||||||||
| C、0,π,2π,3π,4π | ||||||||
D、0,
|