题目内容
【题目】已知
的直角顶点
在
轴上,点
为斜边
的中点,且
平行于
轴.
(Ⅰ)求点
的轨迹方程;
(Ⅱ)设点
的轨迹为曲线
,直线
与
的另一个交点为
.以
为直径的圆交
轴于
即此圆的圆心为
,
求
的最大值.
【答案】(1)
(2)![]()
【解析】试题分析:(1)设
的中点
的坐标为
,根据
,得
即
;(2)(2)讨论BC的斜率,求出圆P的半径和横坐标,计算
最小值,进而得到
的最大值.
详解:
设点
的坐标为(
,则
的中点
的坐标为
,点
的坐标为
,
![]()
由
,得
即
,
经检验,当点
运动至原点时,
与
重合,不合题意舍去.
所以,轨迹
的方程为
.
(Ⅱ)依题意,可知直线
不与
轴重合,设直线
的方程为
,点
、
的坐标分别为(
,圆心
的坐标为
.
由
可得
![]()
圆
的半径
.
过圆心
作
于点
,则
.
在
中,即
垂直于
轴时,
取得最小值为
,
取得最大值为
,
所以,
的最大值为![]()
【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:
分别加以统计,得到如图所示的频率分布直方图.
![]()
(1)从样本中日平均生产件数不足60的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(2)规定日平均生产件数不少于80的为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
P( | 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
附:![]()
【题目】2019年,海南等8省公布了高考改革综合方案将采取“
”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.
![]()
(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;
(2)试根据茎叶图分析甲同学的物理和历史哪一学科成绩更稳定.(不需计算)
(3)甲同学发现,其物理考试成绩
(分)与班级平均分
(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.(计算
,
时精确到0.01)
| 57 | 61 | 65 | 72 | 74 | 77 | 84 |
| 76 | 82 | 82 | 85 | 87 | 90 | 93 |
参考数据:
,
,
,
,
,
.
参考公式:
,![]()