题目内容

 已知三条直线l1: mx-y+m=0, l2: x+my-m(m+1)=0, l3: (m+1)x-y+m+1=0围成ΔABC,求m为何值时,ΔABC的面积有最大值、最小值。

 [解]记l1, l2, l3的方程分别为①,②,③。在①,③中取x=-1, y=0,知等式成立,所以A(-1, 0)为l1与l3的交点;在②,③中取x=0, y=m+1,等式也成立,所以B(0, m+1)为l2与l3的交点。设l1, l2斜率分别为k1, k2, 若m0,则k1•k2=, SΔABC=,由点到直线距离公式|AC|=,|BC|=

所以SΔABC=。因为2m≤m2+1,所以SΔABC≤。又因为-m2-1≤2m,所以,所以SΔABC≥

当m=1时,(SΔABC)max=;当m=-1时,(SΔABC)min=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网