题目内容

19.已知数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn
(1)求数列{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{4}{{a}_{n}{a}_{n+1}}$(n∈N*),记数列{cn}的前n项和为Tn,求使Tn>$\frac{4}{15}$成立的正整数n的最小值.

分析 (1)数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn.n=1时,2a1-4×2=4×1,解得a1
(2)cn=$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{(2n+4)(2n+6)}$=$\frac{1}{(n+2)(n+3)}$=$\frac{1}{n+2}$-$\frac{1}{n+3}$,利用裂项求和方法可得Tn,再利用数列单调性即可得出.

解答 解:(1)数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn
∴n=1时,2a1-4×2=4×1,解得a1=6.
∴an=6+2(n-1)=2n+4.
(2)cn=$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{(2n+4)(2n+6)}$=$\frac{1}{(n+2)(n+3)}$=$\frac{1}{n+2}$-$\frac{1}{n+3}$,
∴数列{cn}的前n项和为Tn=$(\frac{1}{3}-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{5})$+…+$(\frac{1}{n+2}-\frac{1}{n+3})$=$\frac{1}{3}$-$\frac{1}{n+3}$.
由Tn>$\frac{4}{15}$,即$\frac{1}{3}$-$\frac{1}{n+3}$>$\frac{4}{15}$,化为:$\frac{1}{n+3}$<$\frac{1}{15}$,
解得n≥13.
∴使Tn>$\frac{4}{15}$成立的正整数n的最小值为13.

点评 本题考查了等差数列的通项公式、裂项求和方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网