题目内容
19.已知数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn.(1)求数列{bn}的通项公式;
(2)设数列{cn}满足cn=$\frac{4}{{a}_{n}{a}_{n+1}}$(n∈N*),记数列{cn}的前n项和为Tn,求使Tn>$\frac{4}{15}$成立的正整数n的最小值.
分析 (1)数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn.n=1时,2a1-4×2=4×1,解得a1.
(2)cn=$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{(2n+4)(2n+6)}$=$\frac{1}{(n+2)(n+3)}$=$\frac{1}{n+2}$-$\frac{1}{n+3}$,利用裂项求和方法可得Tn,再利用数列单调性即可得出.
解答 解:(1)数列{bn}满足b1=1,b2=2,且当n∈N*时,anbn+1-4bn+1=4nbn.
∴n=1时,2a1-4×2=4×1,解得a1=6.
∴an=6+2(n-1)=2n+4.
(2)cn=$\frac{4}{{a}_{n}{a}_{n+1}}$=$\frac{4}{(2n+4)(2n+6)}$=$\frac{1}{(n+2)(n+3)}$=$\frac{1}{n+2}$-$\frac{1}{n+3}$,
∴数列{cn}的前n项和为Tn=$(\frac{1}{3}-\frac{1}{4})$+$(\frac{1}{4}-\frac{1}{5})$+…+$(\frac{1}{n+2}-\frac{1}{n+3})$=$\frac{1}{3}$-$\frac{1}{n+3}$.
由Tn>$\frac{4}{15}$,即$\frac{1}{3}$-$\frac{1}{n+3}$>$\frac{4}{15}$,化为:$\frac{1}{n+3}$<$\frac{1}{15}$,
解得n≥13.
∴使Tn>$\frac{4}{15}$成立的正整数n的最小值为13.
点评 本题考查了等差数列的通项公式、裂项求和方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
| A. | 0 | B. | -1 | C. | -2 | D. | -8 |
| A. | (-∞,-1) | B. | (4,+∞) | C. | (-1,4) | D. | (-4,-1) |
| A. | c>b>a | B. | b>c>a | C. | b>a>c | D. | c>a>b |
| A. | [6,24) | B. | [24,120) | C. | (-∞,6) | D. | (5,24) |