ÌâÄ¿ÄÚÈÝ

5£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF£¬µãPΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÇÒ|PF|µÄ×îСֵΪ$\sqrt{2}$-1£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Ö±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬Á½µãA¡¢B£¨A¡¢B¶¼ÔÚxÖáÉÏ·½£©£¬ÇÒ¡ÏOFA+¡ÏOFB=180¡ã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©µ±AΪÍÖÔ²ÓëyÖáÕý°ëÖáµÄ½»µãʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ó£©¶ÔÓÚ¶¯Ö±Ïßl£¬ÊÇ·ñ´æÔÚÒ»¸ö¶¨µã£¬ÎÞÂÛ¡ÏOFAÈçºÎ±ä»¯£¬Ö±Ïßl×ܾ­¹ý´Ë¶¨µã£¿Èô´æÔÚ£¬Çó³ö¸Ã¶¨µãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÓÉÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬µãPΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÇÒ|PF|µÄ×îСֵΪ$\sqrt{2}$-1£¬Çó³öa2=2£¬b2=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©ÓÉÌâÒâA£¨0£¬1£©£¬F£¨-1£¬0£©£¬µÃkAF=$\frac{1-0}{0-£¨-1£©}$=1£¬´Ó¶økBF=-1£¬½ø¶øÖ±ÏßBFΪ£ºy=-x-1£¬´úÈë$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬µÃ3x2+4x=0£¬ÓÉ´ËÄÜÇó³öÖ±ÏßABµÄ·½³Ì£®
£¨¢ó£©ÓÉ¡ÏOFA+¡ÏOFB=180¡ã£¬ÖªBÔÚÓÚxÖáµÄ¶Ô³ÆµãB1ÔÚÖ±ÏßAFÉÏ£¬ÉèÖ±ÏßAFµÄ·½³ÌΪ£ºy=k£¨x+1£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨${k}^{2}+\frac{1}{2}$£©x2+2k2x+k2-1=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±ÏßµÄбÂÊ¡¢Ö±Ïß·½³Ì£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ö¶ÔÓÚ¶¯Ö±Ïßl£¬´æÔÚÒ»¸ö¶¨µãM£¨-2£¬0£©£¬ÎÞÂÛ¡ÏOFAÈçºÎ±ä»¯£¬Ö±Ïßl×ܾ­¹ý´Ë¶¨µã£®

½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
¡ßÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¡à${e}^{2}=\frac{{c}^{2}}{{a}^{2}}=\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{2}$£¬¡àa=$\sqrt{2}b$£¬
¡ßµãPΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬ÇÒ|PF|µÄ×îСֵΪ$\sqrt{2}$-1£¬
¡àc=1£¬¡àa2=b2+c2=b2+1£¬
½âµÃa2=2£¬b2=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨¢ò£©ÓÉÌâÒâA£¨0£¬1£©£¬F£¨-1£¬0£©£¬
¡àkAF=$\frac{1-0}{0-£¨-1£©}$=1£¬
¡ß¡ÏOFA+¡ÏOFB=180¡ã£®¡àkBF=-1£¬
¡àÖ±ÏßBFΪ£ºy=-£¨x+1£©=-x-1£¬
´úÈë$\frac{{x}^{2}}{2}+{y}^{2}=1$£¬µÃ3x2+4x=0£¬½âµÃx=0»òx=-$\frac{4}{3}$£¬
´úÈëy=-x-1£¬µÃ$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$£¬Éᣬ»ò$\left\{\begin{array}{l}{x=-\frac{4}{3}}\\{y=\frac{1}{3}}\end{array}\right.$£¬¡àB£¨-$\frac{4}{3}$£¬$\frac{1}{3}$£©£®
¡à${k}_{AB}=\frac{1-\frac{1}{3}}{0-£¨-\frac{4}{3}£©}$=$\frac{1}{2}$£¬¡àÖ±ÏßABµÄ·½³ÌΪ£ºy=$\frac{1}{2}x+1$£®
£¨¢ó£©´æÔÚÒ»¸ö¶¨µãM£¨-2£¬0£©£¬ÎÞÂÛ¡ÏOFAÈçºÎ±ä»¯£¬Ö±Ïßl×ܾ­¹ý´Ë¶¨µã£®
Ö¤Ã÷£º¡ß¡ÏOFA+¡ÏOFB=180¡ã£¬¡àBÔÚÓÚxÖáµÄ¶Ô³ÆµãB1ÔÚÖ±ÏßAFÉÏ£¬
ÉèÖ±ÏßAFµÄ·½³ÌΪ£ºy=k£¨x+1£©£¬
´úÈë$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨${k}^{2}+\frac{1}{2}$£©x2+2k2x+k2-1=0£¬
ÓÉΤ´ï¶¨ÀíµÃ${x}_{1}+{x}_{2}=\frac{2{k}^{2}}{{k}^{2}+\frac{1}{2}}$£¬${x}_{1}{x}_{2}=\frac{{k}^{2}-1}{{k}^{2}+\frac{1}{2}}$£¬
ÓÉÖ±ÏßABµÄбÂÊ${k}_{AB}=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$£¬µÃABµÄ·½³ÌΪ£ºy-y1=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$£¨x-x1£©
Áîy=0£¬µÃ£º
x=x1-y1•$\frac{{x}_{1}-{x}_{2}}{{y}_{1}-{y}_{2}}=\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{y}_{1}-{y}_{2}}$£¬
y1=k£¨x1+1£©£¬-y2=k£¨x2+1£©£¬
$x=\frac{{x}_{2}{y}_{1}-{x}_{1}{y}_{2}}{{y}_{1}-{y}_{2}}$=$\frac{{x}_{2}¡Ák£¨{x}_{1}+1£©+{x}_{1}¡Ák£¨{x}_{2}+1£©}{k£¨{x}_{1}+1£©+k£¨{x}_{2}+1£©}$=$\frac{2{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}}{{x}_{1}+{x}_{2}+2}$
=¡Ý$\frac{2¡Á\frac{{k}^{2}-1}{{k}^{2}+\frac{1}{2}}-\frac{2{k}^{2}}{{k}^{2}+\frac{1}{2}}}{2-\frac{2{k}^{2}}{{k}^{2}+\frac{1}{2}}}$=-2£¬
¡à¶ÔÓÚ¶¯Ö±Ïßl£¬´æÔÚÒ»¸ö¶¨µãM£¨-2£¬0£©£¬ÎÞÂÛ¡ÏOFAÈçºÎ±ä»¯£¬Ö±Ïßl×ܾ­¹ý´Ë¶¨µã£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬¿¼²éÖ±ÏßÊÇ·ñ¹ý¶¨µãµÄÅжÏÓëÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø