题目内容
1.已知$cosα=\frac{1}{2}$,那么cos(-2α)等于( )| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 利用诱导公式,二倍角的余弦函数公式即可求值得解.
解答 解:∵$cosα=\frac{1}{2}$,
∴cos(-2α)=cos2α=2cos2α-1=2×($\frac{1}{2}$)2-1=-$\frac{1}{2}$.
故选:B.
点评 本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数求值中的应用,属于基础题.
练习册系列答案
相关题目
10.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{e}^{x}(x≥2)}\\{f(x+1)(x<2)}\end{array}\right.$则f(ln3)=( )
| A. | $\frac{1}{e}$ | B. | 2e | C. | e | D. | ee |
16.如果向量$\overrightarrow a=(1,\;2)$,$\overrightarrow b=(4,\;3)$,那么等于$\overrightarrow a-2\overrightarrow b$( )
| A. | (9,8) | B. | (-7,-4) | C. | (7,4) | D. | (-9,-8) |
10.某商品销量q与售价p满足q=10-λp,总成本c与销量满足c=4+μq,销售收入r与售价及销量之间满足r=pq,其中λ,μ均为正常数,设利润=销售收入-总成本,则利润最大时的售价为( )
| A. | $\frac{10-λμ}{λ}$ | B. | $\frac{10+λμ}{λ}$ | C. | $\frac{10-λμ}{2λ}$ | D. | $\frac{10+λμ}{2λ}$ |
4.已知函数f1(x)=$\frac{lg(1-{x}^{2})}{|{x}^{2}-2|-2}$;f2(x)=(x-1)•$\sqrt{\frac{x+1}{x-1}}$;f3(x)=loga(x+$\sqrt{{x}^{2}+1}$),(a>0,a≠1);f4(x)=x•($\frac{1}{{2}^{x}-1}+\frac{1}{2}$),(x≠0),下面关于这四个函数奇偶性的判断正确的是( )
| A. | 都是偶函数 | |
| B. | 一个奇函数,一个偶函数,两个非奇非偶函数 | |
| C. | 一个奇函数,两个偶函数,一个非奇非偶函数 | |
| D. | 一个奇函数,三个偶函数 |