题目内容

1.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求三棱锥D-AA1C1的体积.

分析 (1)由BB1⊥平面ABC得BB1⊥AC,由勾股定理的逆定理得AC⊥BC,故AC⊥平面BCC1B1,于是AC⊥BC1;'
(2)设CB1与C1B的交点为E,连接DE,由中位线定理可得DE∥AC1,于是AC1∥平面CDB1
(3)由D为AB中点可知V${\;}_{D-A{A}_{1}{C}_{1}}$=$\frac{1}{2}$V${\;}_{B-A{A}_{1}{C}_{1}}$=$\frac{1}{2}$V${\;}_{B-AC{C}_{1}}$=$\frac{1}{2}$V${\;}_{{C}_{1}-ABC}$.

解答 解:(1)证明:∵AC=3,AB=5,BC=4,∴AC⊥BC
∵BB1⊥平面ABC,AC?平面ABC,
∴AC⊥CC1,又BC∩CC1=C,BC?平面BCC1B1,CC1?平面BCC1B1
∴AC⊥平面BCC1B1.∵BC1?平面BCC1B1
∴AC⊥BC1.               
(2)证明:设CB1与C1B的交点为E,连接DE,
∵四边形BCC1B1是平行四边形,∴E是BC1的中点,
∵D是AB的中点,
∴DE∥AC1,又∵DE?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1.                                    
(3)解:V${\;}_{B-A{A}_{1}{C}_{1}}$=V${\;}_{B-AC{C}_{1}}$=V${\;}_{{C}_{1}-ABC}$=$\frac{1}{3}{S}_{△ABC}•C{C}_{1}$=$\frac{1}{3}×\frac{1}{2}×3×4×4=8$.
∵D是AB的中点,
∴V${\;}_{D-A{A}_{1}{C}_{1}}$=$\frac{1}{2}$V${\;}_{B-A{A}_{1}{C}_{1}}$=4.

点评 本题考查了线面垂直的判定与性质,线面平行的判定,棱锥的体积计算,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网