题目内容
若a1=1,a2=5,an+2=an+1-an,则a2011=( )
分析:a1=1,a2=5,a n+2=a n+1-an(n∈N*),求出a3=a2-a1=4,a4=a3-a2,a5=a4-a3,a6=a5-a4,a7=a6-a5,a8=a7-a6,由此可知这是一个周期为6的数列,从而能够求出a2011.
解答:解:∵a1=1,a2=5,a n+2=a n+1-an(n∈N*),
∴a3=a2-a1=5-1=4,
a4=a3-a2=4-5=-1,
a5=a4-a3=-1-4=-5,
a6=a5-a4=-5+1=-4,
a7=a6-a5=-4+5=1,
a8=a7-a6=1-(-4)=5,
∴数列{an}是一个周期为6的数列,
∴a2011=a1=1.
故选A.
∴a3=a2-a1=5-1=4,
a4=a3-a2=4-5=-1,
a5=a4-a3=-1-4=-5,
a6=a5-a4=-5+1=-4,
a7=a6-a5=-4+5=1,
a8=a7-a6=1-(-4)=5,
∴数列{an}是一个周期为6的数列,
∴a2011=a1=1.
故选A.
点评:本题主要考查由递推公式推导数列的通项公式,其中渗透了周期数列这一知识点,属于基础题.
练习册系列答案
相关题目