题目内容
3.已知$\frac{2+i}{1+ai}$=i,其中i为虚数单位,a∈R,则a=-2.分析 化简复数,利用复数的相等的充要条件求解即可.
解答 解:$\frac{2+i}{1+ai}$=i,其中i为虚数单位,a∈R,
可得2+i=-a+i.可得a=-2.
故答案为:-2.
点评 本题考查复数的基本运算,考查计算能力.
练习册系列答案
相关题目
14.设F1,F2为双曲线$\frac{{x}^{2}}{4}-{y}^{2}$=1的两个焦点,P是双曲线上任意一点,且∠F1PF2=60°,则△PF1F2的面积是( )
| A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 3$\sqrt{3}$ |
11.已知实数x,y满足约束条件$\left\{\begin{array}{l}{y≥1-x}\\{y<1+x}\\{x≤2}\\{\;}\end{array}\right.$,则目标函数Z=x+y取不到的值为( )
| A. | 1 | B. | 2 | C. | 4 | D. | 5 |
18.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)=( )
| A. | {x|1<x<2} | B. | {x|x≥1} | C. | {x|x≤2} | D. | {x|x≤1或x≥2} |
15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左焦点在抛物线y2=20x的准线上,且双曲线的一条渐近线的斜率为$\frac{4}{3}$,则双曲线的标准方程是( )
| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 |
13.某游戏规则如下:随机地往半径为4的圆内投掷飞标,若飞镖到圆心的距离大于2,则成绩为及格;若飞镖到圆心的距离小于1,则成绩为优秀;若飞镖到圆心的距离大于或等于1且小于或等于2,则成绩为良好,那么在所有投掷到圆内的飞镖中得到成绩为良好的概率为( )
| A. | $\frac{1}{16}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |