题目内容

19.f(x)=$\frac{-{x}^{2}+x+k}{{e}^{x}}$有极值,则k的取值范围是(  )
A.k≥$\frac{5}{4}$B.k>-$\frac{5}{4}$C.k≤-$\frac{5}{4}$D.k<-$\frac{5}{4}$

分析 求出函数的导数,通过导函数等于0,方程有实数解,推出结果即可.

解答 解:f(x)=$\frac{-{x}^{2}+x+k}{{e}^{x}}$,
可得f′(x)=$\frac{-2x+1+{x}^{2}-x-k}{{e}^{x}}$=$\frac{{x}^{2}-3x-k+1}{{e}^{x}}$,
f(x)=$\frac{-{x}^{2}+x+k}{{e}^{x}}$有极值,
可得$\frac{{x}^{2}-3x-k+1}{{e}^{x}}=0$,即x2-3x-k+1=0,有不相等的实数根,
可得△=9+4k-4>0,解得k$>-\frac{5}{4}$.
故选:B.

点评 本题考查函数的极值的求法与应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网