题目内容
已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A(-1,-2)对称的直线l′的方程.
解 (1)设A′(x,y),再由已知![]()
解得![]()
∴A′
.
(2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m′上.
设对称点为M′(a,b),
则![]()
解得M′
.
设m与l的交点为N,则由
得N(4,3).
又∵m′经过点N(4,3),
∴由两点式得直线方程为9x-46y+102=0.
(3)设P(x,y)为l′上任意一点,
则P(x,y)关于点A(-1,-2)的对称点为
P′(-2-x,-4-y),
∵P′在直线l上,
∴2(-2-x)-3(-4-y)+1=0,
即2x-3y-9=0.
练习册系列答案
相关题目